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The Use of Symmetry for Calculating Structure Semi-Invariants I. 
Primitive Space Groups 

BY CARLO MARIA GRAMACCIOLI* AND KLAUS ZECHMEISTER~" 
Centre Europden de Calcul Atomique et Moldculah'e (C.E.C.A.M.) Bdtiment 506, 91 Campus d'Orsay, France 

(Received I December 1970 and in revised form 7 June 1971) 

A simple method to deduce the equivalent origins, the number of origin-fixing reflexions and the semi- 
invariant structure factors, starting from 'equivalent positions' is given for all primitive space groups. 
The method can be usefully applied to computer routines. Note that only the rotation matrices are 
essential for this purpose. 

Introduction 

In recent years, in connexion with the considerable 
increase ha power and use of direct methods, we have 
felt that a systematic way of deducing semi-invariant 
structure factors, equivalent origins and the number of 
origin-fixing reflexions starting from symmetry trans- 
formations ('equivalent general positions') might be 
particularly useful. Although some computer programs 
for apparently working out the problem do exist (Hall, 
1970), they attempt to solve it in a somewhat empirical 
way; for this reason, and as a result of a working 
period spent together at a meeting of the C.E.C.A.M. 
in Paris (September-October 1970) we considered the 
whole problem from theoretical beginning to practical 
applications, starting from primitive space groups. 

Equivalent origins 

A general space-group transformation, relating one 
point position x = xlal + x2a2 + xaaa to an equivalent pos- 
ition x', can be represented by: 

x ' = M x + t ,  (1) 

where M is a rotation matrix and t a translation vector; 
a change in origin will lead to the expression: 

y '  = N y + u ,  (la) 

where y ' , y ,N  and u correspond to x ' , x , M  and t res- 
pectively, referred to the new origin. 

If the two origins are 'equivalent', the structure- 
factor expressions must have the same functional form 
(Hauptman & Karle, 1953, 1956, 1959, 1961). This 

will be true when, for each transformation, the rotation 
matrices M and N coincide and each component of a 
translation vector t differs from the corresponding one 
u only by integer numbers, i.e. 

N = M  u=t(modco)  . (2) 

As in Hauptman & Karle (1953, 1956, 1959, 1961) 
co is a vector with arbitrary integer components. Call- 
ing s the vector 'origin shift', and substituting y =  
x - s  and y ' = x ' - s  in (la), we have: 

x ' = N x + ( I - N ) s + u ,  (3) 

.where I is the unit 3 × 3 matrix. 
Comparing (3) with (1), and considering that these 

expressions must be equal for every value of x, leads to: 

N = M ;  u = t + ( M - I )  s .  (4) 

Comparing (4) with (2), the condition for s to connect 
two equivalent origins is: 

( M - I ) s = t o .  (5) 

A relation of type (5) must hold simultaneously for all 
M rotation matrices in the space group. Let us denote 
m~ as a vector corresponding to a row of one M - I  
matrix in the space group. If a shift s connects two 
equivalent origins, it follows that for all m{s in the 
group: 

m,s=o~, (6) 

where oo is an integer number. 
Let us choose, from our matrices M - I  in the group, 

a set of three non-coplanar row vectors, m~; if this is 
possible (as for all non-polar groups:I:) we can consider 
three vectors, ds, defined by the relationship m~ds = fits. 
Let us denote by M'  the matrix (non-singular) whose 
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rows are the three ms vectors; this matrix may, or may 
not, necessarily be one M -  I matrix in the group (most 
M - I  matrices are singular). If D is the matrix whose 
columns are the dj vectors, it follows that: 

M ' D = I ;  D = ( M ' )  -1, (7) 

where I is the unit 3 × 3 matrix. 
From (6) and the Appendix, (b), it is evident that any 

possible shift s between 'equivalent' origins must be a 
linear combination, with integer coefficients, of these 
dj vectors, which determine a lattice of possible equi- 
valent origins. This can be most easily seen in space 
group P 1, where the only non-singular matrix M'  that 
can be built is M ' =  - 2 I ;  the lattice of equivalent ori- 
gins is then determined by the three vectors: 

[i] dl  = , d2 = - , d 3 = 

as is universally known. 
If more symmetry elements are present, the d /s  

obtained as above from any M' matrix may ~ot form 
integer scalar products with all the remaining ms rows 
in the group; in this case, the lattice determined by these 
d/s  does not consist entirely of really 'equivalent' 
origins. It can be proved [see Appendix, (e), (f) ,  (g), 
(h)] that the dj's which are compatible with all sym- 
metry transformations in a space group can be obtained 
from inverting any one among the possible non-singular 
M'  matrices whose determinants are the smallest in 
absolute value. 

T e s t s  f or  s e m i - i n v a r i a n c e  a n d  n u m b e r  
o f  ' o r i g i n - d e f i n i n g '  r e f l e x i o n s  

Let us now consider a general shift, s = ~cojdj, between 
equivalent origins. For a structure factor Fh, the phase 
shift zf~0 is given by: 

prescribed values. We end up with a system of three 
equations" 

09ihld 1 + (.02hid 2 + 6o3hid 3 = ,4 qThl/276 
coih2d i + co2h2d 2 + (o3h2d 3 -- A 97h2/27Z (9) 
coih3dl + (D2h3d2 + co3h3d3 = AqTh3/27Z , 

where the unknowns are the three (integer) components 
o91 of the vector 'origin shift'. Fh~, Fh2 and Fh3 are the 
so-called 'origin-defining' reflexions. From (9) it is ev- 
ident that in no case are these reflexions more than 
three in number, the phases of all others being deter- 
mined by the known structure and the co{s. The system 
(9) can be solved (for the three co{s) when: 

(a) No phase of F m is semi-invariant, 
(b) There are no correlations among the h{s [see Ap- 

pendix, (c)], 
(c) No dj is a lattice translation, 
(d) There are no correlations among the d/s  [see Ap- 

pendix, (d)]. 

Whereas (a) and (b) above give general indications 
about how to choose the indices hs of the origin-fixing 
reflexions, (c) and (d) result in suppressing one or more 
equations in the system (9), i.e. the number of these 
origin-fixing reflexions. 

E x a m p l e s  
m 

Space group P6m2  

Let us first consider (a) of the Appendix, and use 
for this example only two rotation matrices, M1 and 
M2, since all the others in the group can derive from 
these by multiplication" 

l 0-1  010] M I =  1 - 1  , M2= - 1  0 . 
0 0 - 0 0 

It follows that 

Jfa = 2nhs = 2n~cojhds, (8) 

where cos are, as usual, integer numbers. For some 
reflexions, taking any one of the three d:'s, we have 
hd:=integer; therefore, any shift between equivalent 
origins changes the phase value by an integer multiple 
of 2re. The phases of these reflexions are 'semi-invariant' 
or 'invariant' (Hauptman & Karle, 1953, 1956, 1959, 
1961): in this treatment, the difference between 'semi- 
invariant' and 'invariant' phases is not considered 
necessary, because we prefer to treat the operation 
'centre of symmetry' in the same way as any other 
operation. 

The phases of all reflexions that are not semi-in- 
variant will depend, accordingly, on our choice of origin. 
Let us imagine a 'known' structure with appropriate 
phases assigned to all reflexions, and consider the origin 
shifts necessary to change some of the phases to certain 

M _I 
0 

1 [:11 
- 2  , M 2 - I =  1 - 1  . 

0 - 0 0 

Examining the rows of M ~ - I  and M 2 - I ,  the only 
nonsingular matrix M'  that we can build is M ' =  
M 1 - I .  Inverting M'  we have" 

D =  - _ !  
3 

0 - 

The dj's are the columns of D. Since d l - d 2 =  = t ,  

where t indicater a lattice translation, only two reflex- 
ions are necessary to define the origin. The semi-in- 
variant Fh's must be such as to have h d l  o r  hdz = integer 



156 C A L C U L A T I N G  S T R U C T U R E  S E M I - I N V A R I A N T S  I. 

(one condition implies the other, because dl-- d2 = t) 
and hd3=integer. Therefore, for semi-invariance, h + 
k = 3n and l is even. 

Space group P622 
Here, too, we can consider only two rotation ma- 

trices: 

M l =  0 , M 2  = 0 , 
0 0 - 

so that 

0 l i l  1 il M l - I =  - 1  , M 2 - I =  1 - 1  . 
0 0 0 - 

The nonsingular matrix M'  with the smallest absolute 
value of the determinant ( =  2) is: 

[i _1 il [:11 il M ; =  - 1  D = M ; - ~ =  1 0 . 
0 -- 0 0 - 

Of the three dis (the columns of D), two are lattice 
translations. Only one reflexion is therefore necessary 
to define the origin; the semi-invariant F~,s must have 
l =  even. 

Space group P23 

Here, three matrices Mx, M 2  and M3 can be considered: 

M1 = ; M 2  = 1 ; 
0 - [_1 

N I 3 =  0 - 1 . 
0 0 

Using rows of the corresponding M~ - I's, a non-singu- 
lar matrix M'  whose determinant is the smallest in 
absolute value (=  2) can be built, such as: 

M ' =  - 1 ; 
0 -  

- 1  - 1  - i ]  D = M ' - I =  0 - 1  - . 
0 0 -  

Of the three flj's, two are integer and, therefore, lattice 
translations. Therefore one origin-defining reflexion 
can be chosen. The semi-invariant reflexions are the 
ones with h + k + l =  even. 

Space group P2 
Here, the only rotation matrix Mt (differing from 

identity) is: 

M l =  1 ; M ' = M I - I =  0 0 . 
0 - 0 0 - 

Since the group is polar, M '  is singular. Referring to 
the non-polar directions, x and z, we can build a 2 x 2 

M'  matrix ( = - 2 I )  and invert it. Consequently, the 
dfs  are: 

[!] [0112 [010 , da = a (da2 undetermined) d l =  , d2 = ny 

Besides having h = even, l =  even, the semi-invaiiant 
reflexions must have k = 0 ,  because of the particular 
nature of da. Three origin-defining reflexions can be 
chosen. 

APPENDIX 

(a) When a rotation matrix C is the product of two 
matrices A and B, then any vector dj giving integer 
scalar products with all rows of ( A - I )  and (B-I) gives 
integer products with all rows of (C-I). 
Proof: We have: 

( A - I )  dj = ~ ; ( B - I ) d j  = t~2; ( B - A )  d.j = t ~ 2 -  ~ l  = ~ 3 ,  
where ~i are vectors with integer components. We can 
also write: ( A B -  I) dj = (A + I) ( B -  I) d: - ( B -  A) d: = 
( A + I ) ~ 2 - ~ 3 .  Since the elements of A are integers 
the result is obvious. 

(b) All the possible shifts s between equivalent ori- 
gins are linear combinations, with integer coefficients, 
of the dj vectors, as obtained from the inversion of one 
M'  matrix. 

Proof'. Since the matrix D = (M') -1 is not singular, 
any vector can be expressed as s =  ~pjdj. Since mid:= 
fii~, it follows that s mj =pj .  Therefore, if one or more 
p f s  are not integer, s does not give an integer product 
with at least one mi and the new origin is not equivalent 
to the 'old' one. 

(c) Kinds of correlation between h, in the system 
(9): 

(i) The hi are linearly dependent. For instance, if 
hi = aha+ bh3, the first of equations (9) becomes: 

o)l(ah2dl + bhadi) 
+ o92(ah2d2 + bh3d2) + . . .  = A~0hi/2n, 

the coefficients of the unknowns in the first equation 
becoming linear combinations of the coefficients in the 
other equations. 

(2) The h{s are linearly dependent modulo h', where 
the phase of  Fh, is semi-invariant. For instance, if hi = 
ah2+bha+h ' ,  considering that h ' d l = 0  (rood 1), the 
result is as in the preceding case. 

(3) The h~'s, when transformed by a symmetry oper- 
ation in the group, are linearly dependent (modulo h'). 
For instance, if hi = a0a2M) + bh3 + h', where M is a 
rotation matrix of some symmetry operation, and a is 
integer, we have, for the first equation in (9): 

coi(ah2Mdl + bh3dl + h ' d i )  

q- co2(ah2Md2 q- bh3d2 -t- h'dl) + . . .  = A~Ohl/27~. 
Since ( M - I ) d j = ¢ o ,  i.e. M d j = t o + d j ,  a n d  a h z o + h ' d l =  
0 (rood 1), the demonstration proceeds as for case (2). 
This case is obviously the generalization of the two 
preceding cases. 
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(d) The correlations (if any) between dj's in the 
system (9) can always be reduced to the form" 

d~ + dj = t, or dl 4- d2 _ d3 = t ,  

where t is a lattice translation. 
Proof: First of all, since the matrix D = ( M ' )  -1 is 

not singular, any dj is not a linear combination, as such, 
of the others. Since a lattice translation is a possible 
shift between equivalent origins, t must be a linear com- 
bination of the d f s  with integer coefficients [see point 
(b)]. The components of each dj will be, in general, 
fractional. For  a centric group, the dfs  themselves will 
be linear combinations, with integer coefficients, of the 
ds vectors proper to group PT (otherwise the operation 
'centre-of-symmetry' would not be satisfied by all the 
origins); since any operation corresponding to a ro- 
tation of 180 ° around one axis behaves -  in this res- 
p e c t - j u s t  as a centre of symmetry for the directions 
which are perpendicular to it, we can always arrive at 
the same situation as for a centric case for non-polar 
directions ofnon-centric groups of any system but hex- 
agonal/trigonal with a 6 or 3 axis. Accordingly, the 
non-zero components of every dj will be either integer 
or +½. For  the latter (hexagonal/trigonal) groups, 
considering the partitioning of rotation matrices as 
specified in point (h), which leads to a 2 × 2 matrix 
whose determinant is 3, two of the dfs  will have their 
non-zero elements equal to + ½ or + ~-. Consequently, 
when all non-integer components are + ½, for any pro- 
duct ajdj we have" ajdj = t '  (where t '  is an integer vector, 
i.e. a lattice translation) if aj is even, or ajdj = t ' - d j  
when aj is odd. When the components are + ½ or + 2, 
we have ajdj = t '  if aj is a multiple of 3, or (aj + 1)dj = t '  
in all other cases. This results in having either dj = t ,  
or d~ + dj = t, or dx + d2 -I- d3 = t, as we wanted to show. 

Another possible correlation between d f s  might be 
the following: d~ = aMdj + bdk, where M is the rotation 
matrix relative to a symmetry operation in the space 
group and a, b are integer numbers. F rom (5), we ob- 
tain: Md = co + dj(dj itself being a possible origin shift 
s), and the results are as in the preceding cases.* 

(e) For  any system but the hexagonal/trigonal one, 
the absolute value of any possible determinant of a 
non-singular M'  matrix is 2 n (n = 1,2, 3). 

Proof'. Let us adopt the symbol r2 for a determi- 

nant of a matrix, whose rows are r~, r2 and r3. Then: 

r 2 + r = Ir2l + r2 + r~ + r2 + r i + r; . 
q-r r 3 r 3 r a r 3 r 3 r 3 r3 

* In agreement with the equations from which it has been 
derived (the equations depend only on rotation matrices M0, 
the symmetry of the dj lattice is the one of the corresponding 
space group without screw and glide translations; strange as 
it may seem, whereas dj = Md~ is a possible origin shift, it is 
not generally true that dj=Md~+t is another possible origin 
shift (consider, for instance, the space group P41212). 

Every row of an M'  matrix can be written as the sum 
of  a row rt of a rotation matrix M and a row r~ of  
- I ;  in all groups except in the hexagonal/trigonal 
system, r~ can be only a unit vector + [100], + [010], 
+ [001], as (of course) r~. Consequently, each of the 
eight determinants in the sum will be either + 1 or 
zero; in the latter case, two rows must be equal (in 
absolute value). If  one determinant is zero, then another 
one at least must be zero, because for any choice of 
two rows, these rows are common to two determinants. 
For  the same reason, if two determinants are non-zero, 
they must be either equal or opposite in sign. This makes 
the absolute value of IM'I either zero or 2 n, with a 
maximum of 8. 

( f )  If the determinants of all possible non-singular 
M '  matrices are multiples of the smallest one by integer 
numbers, then the d f s  obtained from inverting any 
M'  matrix whose determinant is the smallest (in ab- 
solute value) form integer products with any row m~ 
of all other possible M '  matrices in the group. 

Proof: Let us suppose that a product m~dj=m/n, 
where m is not divisible by n. Then, replacing the row 
mj in the M'  matrix whose determinant is supposed to 
be the smallest with m~, we would obtain a new M'  
matrix, whose determinant is m/n times the smallest 
one, against our hypothesis. 

(g) If the d f s  obtained from inverting one MI matrix 
give integer products with all rows m~ of another M~ 
matrix, then IM~I =nlM~ I, where n is integer. 

Proof: If midj = k~j, we have m~ = Y k~jm~, where mj 
is a row of M~. Consequently, IM~I =IKIIM~ l, where 
K is the matrix, whose elements are the k , fs .  If  all 
these elements are integer, IKI is integer (=n) .  

(h) The dfs  compatible with all symmetry trans- 
formations in the group can be obtained from inverting 
any one among the possible non-singular M '  matrices 
whose determinants are the smallest in absolute value. 

Proof: For  non-hexagonal/trigonal space groups, ap- 
plying points (e) and ( f ) ,  the conclusion is obvious. 
For  hexagonal/trigonal groups, however, point (e) can- 
not be applied, because in some rotation matrices M 
one row of the kind [1T0] or [T10] is present. 

All rotation matrices M1 in the hexagonal/trigonal 
system can be partitioned as follows: 

A i C  

where A and B are 2 x 2 and 1 x 1 matrices respectively, 
and C , C '  have their elements all equal to zero.t  A 
rotation of  120 ° around the c axis is always part  of  the 
group; for this operation, 

- [i A__[0 I- ] ;A-I= 

t We point out here that for some space groups, such as 
P312 and P321, which correspond to the same point group 
(32), the sets of rotation matrices are different. 
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Let us indicate, by Am, the A matrix corresponding to 
the minimum rotation around the c axis. The groups 
with 6 or 3 axes must contain either binary (180 °) ro- 
tation or inversion respectively; one A matrix is there- 
fore - I(2 × 2), and the determinant of the corresponding 
A - I  is - 4 .  Because of points (a) and (g), the deter- 
minant of A m - I  cannot be other than + 1, since 3 and 
- 4  must be integer multiples of it. Therefore, in this 
case the application of point ( f )  becomes possible, as 
for non-hexagonal space groups. For groups with a 
or 3 axis, this symmetry element can be alone [and 
then we can apply points (a) and (g)] or combined with 
other symmetry elements. In the latter case, each new 
symmetry element is relative to a series of rotation 
matrices, one of which (let us call it Ro) has rows as in 
non-hexagonal groups (see International Tables for X- 
ray Crystallography, 1952); the others are combinations 
of this operation and rotations around c. Let us now 
examine which A matrices can be related to Ro. Omit- 
ting singular matrices, the identity, and - I  (which 
would bring us back to 3 or 6 axes), and moreover 
considering that, since a and b are oblique, no rotations 
are possible which leave either x or y unchanged, we 
end up with: +[o 
the rows of the corresponding A - I  matrices being 
only + [11] and [i-l]. The latter is already a row of the 
A - I  matrix corresponding to a rotation of 120°; the 
former rows, if present, can be combined with the row 

[12] (of the 120 ° rotation) to give a new 2 x 2 matrix, 
whose determinant is + 1. Consequently, we can always 
build a matrix M'  such that the determinants of all the 
others are its integer multiples, making the application 
of ( f )  possible even in this case. 

The fundamental part of this theory was developed 
at the C.E.C.A.M. meeting on direct methods (Sep- 
tember-October 1970), where a computer routine wor- 
king essentially to this scheme was written (in FOR- 
TRAN language). Accordingly, we want to thank the 
Italian Consiglio Nazionale delle Ricerche and the 
French Conseil National de la Rrcherche Scientifique 
for making it possible to carry out this work. The kind 
hospitality at C.E.C.A.M., extended by Dr Carl Moser, 
is also gratefully appreciated. We thank Dr Gremlich 
and Professor Wondratschek for useful criticism. 
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Calculation of the Intensity of Secondary Scattering of X-rays by Noncrystalline 
Materials. II. Moving Sample Transmission Geometry 
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Equations that require numerical integration over only one variable were derived for calculating the 
intensity of secondary scattering of X-rays for noncrystalline samples in the case of a transmission 
geometry, in which the sample is rotated so that the incident and diffracted beams are always at equal 
angles with respect to a normal to the faces of the slab of sample. Tables are given that allow the in- 
tensity ratios of secondary-to-primary scattering to be determined without making lengthy calculations. 

Introduction 

The first paper of this series (Dwiggins & Park, 1971) 
gives the background material, general theory, and 
nomenclature section needed to follow this paper. 

The transmission geometry is best visualized by 
considering a slab of sample in a reflection geometry 
diffractometer to be rotated by 90 ° from the reflection 

position when the instrument is set for zero total 
scattering angle. It is then apparent that the incident 
and diffracted X-ray beams will form equal scattering 
angles with a normal to the sample faces at all scat- 
tering angles. In comparison with the more usual 
transmission geometry, where the sample remains fixed 
and normal to the incident X-ray beam, this type of 
transmission geometry has the advantages that the 


